

1.10 UM-I-10.6

$1.10.1\,\,2.0$ – $12.0\,\mu m$ and DC – $100\,\,MHz$ HgCdTe universal IR detection module with optically immersed photovoltaic multiple junction detector

UM-I-10.6 is universal "all-in-one" IR detection module. Thermoelectrically cooled, optically immersed photovoltaic detector, based on HgCdTe heterostructure, is integrated with transimpedance, DC coupled preamplifier, a fan and a thermoelectric cooler controller in a compact housing. 3° wedged zinc selenide anti-reflection coated window prevents unwanted interference effects. UM-I-10.6 detection module is very convenient and user-friendly device, thus can be easily used in a variety of LWIR applications.

Spectral response (T_a = 20°C)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

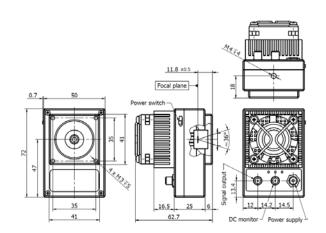
www.vigophotonics.com Page | 31 z 160

Specification ($T_a = 20$ °C)

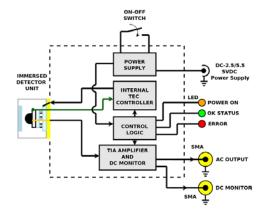
Parameter	Typical value
Optical characteristics	
Cut-on wavelength λ _{cut-on} (10%), μm	≤2.0
Peak wavelength $\lambda_{{\scriptscriptstyle peak'}}$ $\mu{\rm m}$	8.5±1.5
Optimum wavelength $\lambda_{\text{opt'}}$ μm	10.6
Cut-off wavelength λ _{cut-off} (10%), μm	≥12.0
Detectivity D*(λ _{peak}), cm·Hz ^{1/2} /W	≥5.5×10 ⁸
Detectivity D*(λ _{opt}), cm·Hz ^{1/2} /W	≥3.7×10 ⁸
Output noise density v_n (averaged over 1 MHz to f_{hi}), $nV/Hz^{1/2}$	≤330
Electrical parameters	
Voltage responsivity $R_v(\lambda_{peak})$, V/W	≥9.7×10²
Voltage responsivity $R_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	≥6.5×10²
Low cut-off frequency f _{lo} , Hz	DC
High cut-off frequency f _{hi} , Hz	≥100M
Output impedance R _{out} , Ω	50
Output voltage swing V _{out} , V	±1 (R _{Load} = 50 Ω)
Output voltage offset V _{off} , mV	max ±20
Power supply voltage V _{sup} , V	+5
DC monitor (approx. 0 V offset)	
Voltage responsivity $R_v(\lambda_{peak})$, V/W	≥2.2×10²
Voltage responsivity $R_v(\lambda_{opt})$, V/W	≥1.5×10²
Low cut-off frequency f _{lo} , Hz	DC
High cut-off frequency f _{hi} , Hz	150k
Other information	
Active element material	epitaxial HgCdTe heterostructure
Optical area A _o , mm×mm	1×1
Window	wZnSeAR
Acceptance angle Φ	~36°
Ambient operating temperature T _a , °C	10 to 30
Signal output socket	SMA
DC monitor socket	SMA
Power supply socket	DC 2.5/5.5
Mounting hole	M4
Fan	yes

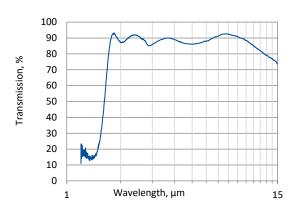
Features

- Integrated TEC controller and fan
- Single power supply
- DC monitor
- Sensitive to IR radiation polarisation
- Optimised for effective heat dissipation
- Compatible with optical accessories
- Cost-effective OEM version availableUniversal and flexible
- Quantity discounted price
- Fast delivery


Applications

- Gas detection, monitoring and analysis
- CO₂ laser (10.6 μm) measurements
- Laser power monitoring and control
- Laser beam profiling and positioning
- Laser calibration


www.vigophotonics.com Page | 32 z 160


Mechanical layout, mm

Schematic diagram

Spectral transmission of wZnSeAR window (typical example)

Included accessories

• 2×SMA-BNC cables + AC adaptor

Dedicated accessories

- OTA optical threaded adapter
- DRB-2 base mounting system

www.vigophotonics.com Page | 33 z 160