

1.3 PVI-2TE-6-1×1-TO8-wZnSeAR-36

1.3.1 3.0 – 6.7 μm HgCdTe two stage thermoelectrically cooled, optically immersed photovoltaic detector

PVI-2TE-6-1×1-TO8-wZnSeAR-36 is a two-stage thermoelectrically cooled IR photovoltaic detector based on sophisticated HgCdTe heterostructure for the best performance and stability. The device is optimized for maximum performance at 6 µm. The detector element is monolithically integrated with hyperhemispherical GaAs microlens to improve the performance of the device. Reverse bias may significantly increase response speed and dynamic range. 3° wedged zinc selenide anti-reflection coated (wZnSeAR) window prevents unwanted interference effects.

Spectral response ($T_a = 20$ °C, $V_b = 0$ mV)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

www.vigophotonics.com Page | 12 z 160

Specification ($T_a = 20$ °C, $V_b = 0$ mV)

Parameter	Detector type
	PVI-2TE-6-1×1-TO8-wZnSeAR-36
Active element material	epitaxial HgCdTe heterostructure
Cut-on wavelength λ _{cut-on} (10%), μm	2.4±0.5
Peak wavelength $\lambda_{\text{peak'}}$ μm	5.2±0.5
Optimum wavelength $\lambda_{ ext{opt'}}$ μ m	6.0
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	6.7±0.3
Detectivity D*(λ_{peak}), cm·Hz ^{1/2} /W	≥7.0×10¹0
Detectivity D*(∆ _{opt}), cm·Hz¹/²/W	≥4.0×10 ¹⁰
Current responsivity $R_i(\lambda_{peak})$, A/W	≥2.7
Current responsivity $R_i(\lambda_{opt})$, A/W	≥1.5
Time constant τ, ns	≤50
Resistance R, Ω	≥200
Active element temperature T _{det} , K	~230
Optical area A _o , mm×mm	1×1
Package	TO8
Acceptance angle Φ	~36°
Window	wZnSeAR

Features

- High performance
- Wide dynamic range
- Versatility
- Quantity discounted price
- Fast delivery

Applications

- Gas detection, monitoring, and analysis (CO, CO₂, NH₃, NO_x)
- Flue gas denitrification
- Fuel combustion monitoring at power plants and other industrial facilities
- Contactless temperature measurements

Related product

• UM-I-6 detection module

Two-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
Q _{max} , W	0.36

Thermistor characteristics

Spectral transmission of wZnSeAR window (typical example)

www.vigophotonics.com Page | 13 z 160

Mechanical layout, mm

Parameter	Value
Immersion microlens shape	hyperhemisphere
Optical area A _o , mm×mm	1×1
R, mm	0.8
A, mm	3.2±0.3

 Φ – acceptance angle, R – hyperhemisphere microlens radius, A – distance from the bottom of the 2TE-TO8 header to the focal plane

Function	Pin number
Detector	1, 3
Reverse bias (optional)	1(-), 3(+)
Thermistor	7, 9
TE cooler supply	2(+), 8(-)
Chassis ground	11
Not used	4, 5, 6, 10, 12

Precautions for use and storage

- Standard ohmmeter may overbias and damage the detector. The bias of 10 mV can be used for resistance measurements.
- Heatsink with a thermal resistance of \sim 2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations for optically immersed detector:
 - irradiance with CW or single pulse longer than 1 µs irradiance on the apparent optical active area must not exceed 2.5 W/cm²,
 - irradiance of the pulse shorter than 1 µs must not exceed 10 kW/cm².
- Storage in a dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.

www.vigophotonics.com Page | 14 z 160