

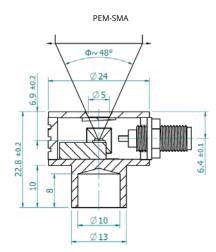
2.23 PEM series

2.23.1 2.0 – 12.0 μm HgCdTe ambient temperature photoelectromagnetic detectors

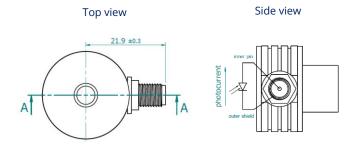
PEM series features uncooled HgCdTe photovoltaic IR detectors based on photelectromagnetic effect in the semiconductor – spatial separation of optically generated electrons and holes in the magnetic field. The devices are designed for the maximum performance at 10.6 μm and especially useful as a large active area detectors to detect CW and low frequency modulated radiation. These devices are mounted in specialized packages with incorporated magnetic circuit inside. 3° wedged zinc selenide anti-reflection coated (wZnSeAR) window prevents unwanted interference effects and protects against pollution.

Spectral response (T_a = 20°C)

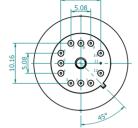
Exemplary spectral detectivity, the spectral response of delivered devices may differ.


Specification (T_a = 20°C)

Parameter	Detector type	
	PEM-10.6	
Active element material	epitaxial HgCdTe heterostructure	
Optimum wavelength $\lambda_{\mathrm{opt'}}$ $\mu\mathrm{m}$	10.6	
Detectivity D*(λ_{peak}), cm·Hz ^{1/2} /W	≥2.0×10 ⁷	
Detectivity D*(λ_{opt}), cm·Hz ^{1/2} /W	≥1.0×10 ⁷	
Current responsivity-active area length product $R_{_{\rm I}}(\lambda_{_{\rm opt}})$ -L, A·mm/W	≥0.002	
Time constant τ , ns	≤1.2	
Resistance R, Ω	≥40	
Active area A, mm×mm	1×1, 2×2	
Package	PEM-SMA	PEM-TO8
Acceptance angle Φ	~48°	~52°
Window	wZnSeAR	

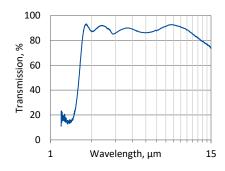

www.vigophotonics.com Page | 109 z 160

Mechanical layout, mm


 $\boldsymbol{\Phi}$ – acceptance angle

PEM-TO8 Dec 52° Dec

Φ – acceptance angle


Bottom view

Function	Pin number
Detector	1, 3
Chassis ground	11
Not used	2, 4, 5, 6, 7, 8, 9, 10, 12

Spectral transmission of wZnSeAR window (typical example)

Dedicated preamplifier

www.vigophotonics.com Page | 110 z 160