


# PEM-10.6-2×2-PEM-SMA-wZnSeAR-48

# 2 – 12 μm HgCdTe ambient temperature photoelectromagnetic detector

**PEM-10.6-2×2-PEM-SMA-wZnSeAR-48** is uncooled IR photovoltaic multiple junction HgCdTe detector based on photelectromagnetic effect in the semiconductor – spatial separation of optically generated electrons and holes in the magnetic field. This device is designed for the maximum performance at 10.6 μm and especially useful as a large active area detector to detect CW and low frequency modulated radiation. This device is mounted in specialized package with incorporated magnetic circuit inside and SMA signal output connector. 3° wedged zinc selenide anti-reflection coated window prevents unwanted interference effects and protects against pollution.

# Spectral response $(T_a = 20^{\circ}C)$



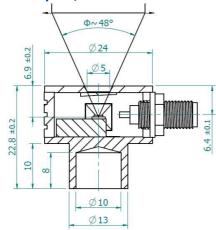


Exemplary spectral detectivity, the spectral response of delivered devices may differ.

# Specification $(T_a = 20^{\circ}C)$

| Parameter                                                                | Detector type                               |
|--------------------------------------------------------------------------|---------------------------------------------|
|                                                                          | PEM-10.6-2×2-PEM-SMA-wZnSeAR-48             |
| Active element material                                                  | epitaxial HgCdTe heterostructure            |
| Cut-on wavelength $\lambda_{\text{cut-on}}$ (10%), $\mu$ m               | ≤2.0                                        |
| Peak wavelength λ <sub>peak</sub> , μm                                   | 8.5±1.5                                     |
| Optimum wavelength λ <sub>opt</sub> , μm                                 | 10.6                                        |
| Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), $\mu$ m             | ≥12.0                                       |
| Detectivity D*( $\lambda_{peak}$ ), cm <sup>-</sup> Hz <sup>1/2</sup> /W | ≥2.0×10 <sup>7</sup>                        |
| Detectivity D*( $\lambda_{opt}$ ), cm'Hz <sup>1/2</sup> /W               | ≥1.0×10 <sup>7</sup>                        |
| Current responsivity R <sub>i</sub> (λ <sub>peak</sub> ), A/W            | ≥0 <b>.</b> 002                             |
| Current responsivity $R_i(\lambda_{opt})$ , A/W                          | ≥0.001                                      |
| Time constant τ, ns                                                      | ≤1.2                                        |
| Resistance R, Ω                                                          | ≥40                                         |
| Active area A, mm×mm                                                     | 2×2                                         |
| Package                                                                  | PEM with SMA connector                      |
| Acceptance angle Φ                                                       | ~48°                                        |
| Window                                                                   | wedged zinc selenide AR coated<br>(wZnSeAR) |

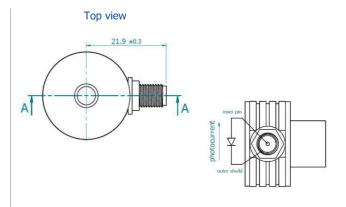
#### **Features**


- Wide spectral range from 2 to 12 μm
- Large active area 2×2 mm<sup>2</sup>
- Wide dynamic range
- No bias required
- No flicker noise
- Short time constant ≤ 1.2 ns
- Radiation polarisation sensitive
- Convenient to use
- Quantity discounted price
- Fast delivery

#### **Applications**

- CO<sub>2</sub> laser (10.6 μm) measurements
- Laser power monitoring and control
- Laser beam profiling and positioning
- Laser calibration





## Mechanical layout, mm



Φ – acceptance angle

# Spectral transmission of wZnSeAR window (typical example)





## **Included accessories**

SMA-BNC cable

# **Precautions for use and storage**

- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature. Beam power limitations:
- - irradiance with CW or single pulse longer than 1 µs irradiance on the apparent optical active area must not exceed 100 W/cm<sup>2</sup>,
  - irradiance of the pulse shorter than 1 µs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.